Implicit-Explicit Runge-Kutta Schemes for Numerical Discretization of Optimal Control Problems

نویسندگان

  • Michael Herty
  • Lorenzo Pareschi
  • Sonja Steffensen
چکیده

Implicit-explicit (IMEX) Runge-Kutta methods play a major rule in the numerical treatment of differential systems governed by stiff and non-stiff terms. This paper discusses order conditions and symplecticity properties of a class of IMEX Runge–Kutta methods in the context of optimal control problems. The analysis of the schemes is based on the continuous optimality system. Using suitable transformations of the adjoint equation, order conditions up to order three are proven as well as the relation between adjoint schemes obtained through different transformations is investigated. Conditions for the IMEX Runge–Kutta methods to be symplectic are also derived. A numerical example illustrating the theoretical properties is presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Preserving Time–Discretization of Optimal Control Problems for the Goldstein–Taylor Model

We consider the development of implicit-explicit time integration schemes for optimal control problems governed by the Goldstein–Taylor model. In the diffusive scaling this model is a hyperbolic approximation to the heat equation. We investigate the relation of time integration schemes and the formal Chapman-Enskog type limiting procedure. For the class of stiffly accurate implicit–explicit Run...

متن کامل

Stability and Error Estimates of Local Discontinuous Galerkin Methods with Implicit-explicit Time-marching for Convection-diffusion Problems

The main purpose of this paper is to analyze the stability and error estimates of the local discontinuous Galerkin (LDG) methods coupled with carefully chosen implicit-explicit (IMEX) Runge-Kutta time discretization up to third order accuracy, for solving one-dimensional linear convection-diffusion equations. In the time discretization the convection term is treated explicitly and the diffusion...

متن کامل

Nonstandard explicit third-order Runge-Kutta method with positivity property

When one solves differential equations, modeling physical phenomena, it is of great importance to take physical constraints into account. More precisely, numerical schemes have to be designed such that discrete solutions satisfy the same constraints as exact solutions. Based on general theory for positivity, with an explicit third-order Runge-Kutta method (we will refer to it as RK3 method) pos...

متن کامل

2-stage explicit total variation diminishing preserving Runge-Kutta methods

In this paper, we investigate the total variation diminishing property for a class of 2-stage explicit Rung-Kutta methods of order two (RK2) when applied to the numerical solution of special nonlinear initial value problems (IVPs) for (ODEs). Schemes preserving the essential physical property of diminishing total variation are of great importance in practice. Such schemes are free of spurious o...

متن کامل

Stability analysis and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for nonlinear convection-diffusion problems

The main purpose of this paper is to analyze the stability and error estimates of the local discontinuous Galerkin (LDG) methods coupled with implicit-explicit (IMEX) time discretization schemes, for solving one-dimensional convectiondiffusion equations with a nonlinear convection. Both Runge-Kutta and multistep IMEX methods are considered. By the aid of the energy method, we show that the IMEX...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 51  شماره 

صفحات  -

تاریخ انتشار 2013